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Results — overview

‣We show that very small approximate unitary t-designs exist when the 

approximation error is measured in certain non-stabilized norms. 

‣This extends the line of work started by Hayden, Leung, Shor and Winter 

(CMP 04) 

‣Our proofs rely on a technical result by Aubrun (CMP 09) 

‣As an application, we exhibit a probabilistic construction of a quantum 
encryption scheme that is non-malleable against adversaries with no (or 

limited) quantum side information.
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groups

‣Can be pushed forward to homogeneous spaces

‣Quantum information: Unitary group, projective 
space (=set of pure states)
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First example: Spherical designs 

In quantum info: state designs, unitary desigs 

Other: Grassmannian designs

Definition: A -design for a homogeneous 
space  is a finite subset  that 
reproduces Haar expectation values of 
polynomials* on of degree .

t
H D ⊂ H

t
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Twirling channels

Basic property of the Haar measure:

𝔼
U∼Haard

[UXU†] =
Tr[X]

d
𝕀

Haar measure implements depolarizing channel T(1)

Twirling channels: 

 T(t)(X) = 𝔼
U∼Haard

[U⊗tX (U⊗t)†]
  T(1,1)(X) = 𝔼

U∼Haard
[(U ⊗ Ū) X (U† ⊗ UT)]
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Approximate unitary designs

 is a 
unitary -design
D ⊂ H

t
 T(t) = T(t)

D :=
1

|D | ∑
U∈D

U⊗t( ⋅ )(U⊗t)†
 ⇔

Natural definition of approximate unitary -designs:t

 is an -approximate 
unitary -design
D ⊂ H ε

t
 T(t) − T(t)

D ⋄
 ⇔

Plenty of constructions: Random quantum circuits (BHH 16), random 

quantum circuits with a lot of structure (HMMHEGR 20, also CLLW 15, 

NHMW 17 for 2-designs)

≤ ε
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: Quantum one-time padt = 1

Standard example of a 1-design:

D1 = {XiZj | i, j ∈ {0,1}} = 𝒫1/{1, − 1,i, − i}

Dn = D⊗n
1

# of elements: 22n

 has minimal size: , Dn T(1)
Dn

⊗ id( |ϕ+⟩⟨ϕ+ | ) = 𝕀

|Dn | ≥ rk (T(1)
Dn

⊗ id( |ϕ+⟩⟨ϕ+ | )) = 22n

Similar for -approximate caseε

What if we are only interested in isolated systems? 

Note: rk (T(1)
Dn

( |ψ⟩⟨ψ | )) ≤ 2n

Naively,  elements could be enough!2n
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No side information: 1-to-1-norm ∥Φ∥1→1 = sup
X

∥Φ(X)∥1

∥X∥1

More generally, ∥Φ∥p→q = sup
X

∥Φ(X)∥q

∥X∥p

Does there exist  with roughly  elements such thatD ⊂ U(2n) 2n

 ?T(1) − T(1)
D 1→1

≤ ε

Hayden, Leung, Shor, Winter 04: Yes! 

 s.t.∃D : |D | ≤ 𝒪(n2nε−2)

.2n T(1) − T(1)
D 1→∞

≤ εT(1) − T(1)
D 1→1

≤

Independent Haar-random unitaries work whp.!
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Subsampling

Ok, independently Haar-random unitaries work. Simpler constructions?

Yes, independent samples from a (full) 1-design (Aubrun 09).

“Subsampling” (ABW 09)

For  with  independently random 1-design elements,D |D | = Ω(n62nε−2)

 2n T(1) − T(1)
D 1→∞

≤ ε

with constant probability.
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’s from last 2 slides: Weak approximate 1-designs.D

Definition: 
An  qubit weak -approximate unitary -design is a finite 
subset  such that 

 

n ε t
D ⊂ U(2n)

T(t) − T(t)
D 1→1

≤ ε

For : Variants for  and :t = 2 T(1,1) Tch

 Tch(Φ)(X) = 𝔼
U∼Haard

[U†Φ(UXU†)U]

  is a “super-duper-operator” 😉. Define Tch ∥ ⋅ ∥⋄→⋄

Can we generalize the result by Aubrun?



Key lemma in Aubrun 09:

Let’s look inside (Aubrun 09)….



Key lemma in Aubrun 09:

N−1 N−1/2 N−1/2) )

Let’s look inside (Aubrun 09)….



Key lemma in Aubrun 09:

N−1 N−1/2 N−1/2) )

Let’s look inside (Aubrun 09)….

Bana
ch s

pace
 geo

metry
!



Key lemma in Aubrun 09: Proof sketch of subsampling weak 
1-design given this Lemma:

N−1 N−1/2 N−1/2) )

Let’s look inside (Aubrun 09)….



Key lemma in Aubrun 09: Proof sketch of subsampling weak 
1-design given this Lemma:

N−1 N−1/2 N−1/2) )
Massage weak 1-design 
error into this form

Let’s look inside (Aubrun 09)….



Key lemma in Aubrun 09: Proof sketch of subsampling weak 
1-design given this Lemma:

Bound this by  weak 1-
design error + ∥T(1)(ρ)∥∞

N−1 N−1/2 N−1/2) )
Massage weak 1-design 
error into this form

Let’s look inside (Aubrun 09)….



Key lemma in Aubrun 09: Proof sketch of subsampling weak 
1-design given this Lemma:

Bound this by  weak 1-
design error + ∥T(1)(ρ)∥∞

Conclude that weak 1-design error is 
bounded if N ≥ polylog(d)d2∥T(1)(ρ)∥∞

N−1 N−1/2 N−1/2) )
Massage weak 1-design 
error into this form

Let’s look inside (Aubrun 09)….



Key lemma in Aubrun 09: Proof sketch of subsampling weak 
1-design given this Lemma:

Bound this by  weak 1-
design error + ∥T(1)(ρ)∥∞

Conclude that weak 1-design error is 
bounded if N ≥ polylog(d)d2∥T(1)(ρ)∥∞

Observation: Yields interesting bound whenever subsampling from 
a design approximating a channel with small  norm!!!1 → ∞

N−1 N−1/2 N−1/2) )
Massage weak 1-design 
error into this form

Let’s look inside (Aubrun 09)….
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Maximally mixed state
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Main result

Theorem (Lancien, CM): 
Let  be a unitary -design. Then the subsampling design  
fulfils 

  

provided that 
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Non-malleability

I One solution is non-malleable encryption:

I want a new
notebook!

Transfer 1000$ to
<notebook store>

encrypt

decrypt

qAe5PSkDo3bFfq9
I5pM2jQgfPUrtdcx
7xF8WS9An

zfwgpvkSR39da7U
haXBA0ya18weOI0
HGP6uqfo7E

ZwOL0XEOuVF74D
8bX0vwDCwGOuSe

Non-malleabilityNon-malleability

???
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Non-malleability

Alice Bob

Mallory

Encryption with 2-design works (ABW 09; AM 17). Key length:  bits for  

qubit encryption (shorter keys and larger ciphertexts are also possible, BCGST04)

∼ 4n n

Weak designs: randomized construction of unitary encryption scheme nm against 

adversaries with  bits of quantum memory, key length ≤ s ∼ 2(n + s)

Full confidentiality ‘for free’.



Summary, open questions

Summary: 

‣We use a technique of Aubrun to give a randomized construction of -designs in weak 
norms 

‣For , our techniques can be used to construct weak designs for the   and 
channel twirls 

‣As an application, we give a randomized construction of a quantum encryption scheme 
that achieves non-malleability against adversaries without quantum side information with 
short keys

t

t = 2 U ⊗ Ū

Open questions: 

‣For the  twirl, we only obtain a result for the  norm. Can it be strengthened 
to ?

U ⊗ Ū 1 → 1
d∥ ⋅ ∥1→∞


