Adaptive Reprogramming in the QROM

QIP 2012 Virtual

Alex Grilo, Kathrin Hövelmanns, Andreas Hülsing and **Christian Majenz**

Outline

- ▶ Motivation the quantum random oracle model
- ▶ The adaptive reprogramming game
- Results
- ▶ Reprogramming superposition oracles
- ▶ A matching algorithm

Motivation — The Quantum Random Oracle Model (QROM)

Hash functions are everywhere in crypto

Hash functions are everywhere in crypto

- Digital signatures
- Message authentication
- Chosen-ciphertext security
- Commitments
- ...

Hash functions are everywhere in crypto

- Digital signatures
- Message authentication
- Chosen-ciphertext security
- Commitments
- ...

Concept: simple

Hash functions are everywhere in crypto

- Digital signatures
- Message authentication
- Chosen-ciphertext security
- Commitments
- ...

Concept: simple

Proving security:
Hard

Hash functions are everywhere in crypto

- Digital signatures
- Message authentication
- Chosen-ciphertext security
- Commitments
- ...

Concept: simple

Proving security:
Hard

Solution:

(Quantum) Random Oracle Model

Idealized model of cryptographic hash functions

Idealized model of cryptographic hash functions

Idealized model of cryptographic hash functions

Model

 $H: \{0,1\}^* \to \{0,1\}^n$ Uniformly random

All agents have black-box access to H

Idealized model of cryptographic hash functions

Model

 $H: \{0,1\}^* \to \{0,1\}^n$ Uniformly random

All agents have black-box access to H

+ Simpler proofs

Idealized model of cryptographic hash functions

Model

 $H: \{0,1\}^* \to \{0,1\}^n$ Uniformly random

All agents have black-box access to H

- + Simpler proofs
- + More efficient constructions with provable security

Quantum Random Oracle Model

Attackers with quantum computer can evaluate hash function on it!

Model

 $H: \{0,1\}^* \to \{0,1\}^n$ Uniformly random

All agents have quantum black-box access to H

Quantum Random Oracle Model (Boneh et al. '10)

- Security reductions are quantum algorithms
- Quantum query complexity

The adaptive reprogramming game

```
Uniformly random function H:\{0,1\}^n \to \{0,1\}^n two-stage oracle algorithm \mathscr{A}=(\mathscr{A}_0,\mathscr{A}_1)
```


$$H_{x^* \mapsto y^*}(x) = \begin{cases} y^* & x = x^* \\ H(x) & \text{else} \end{cases}$$

$$H_{x^* \mapsto y^*}(x) = \begin{cases} y^* & x = x^* \\ H(x) & \text{else} \end{cases}$$

$$H^0 = H$$
$$H^1 = H_{x^* \mapsto y^*}$$

$$\begin{array}{ccc}
 & b & \stackrel{\$}{\leftarrow} \{0,1\} \\
 & x^* & \stackrel{\$}{\leftarrow} \{0,1\}^n \\
 & y^* & \stackrel{\$}{\leftarrow} \{0,1\}^n \\
 & \downarrow & \\
 & \varnothing_0 & \longrightarrow st
\end{array}$$

$$H_{x^* \mapsto y^*}(x) = \begin{cases} y^* & x = x^* \\ H(x) & \text{else} \end{cases}$$

$$H^0 = H$$
$$H^1 = H_{x^* \mapsto y^*}$$

$$\begin{array}{c|c}
b & \stackrel{\$}{\leftarrow} \{0,1\} \\
x^* & \stackrel{\$}{\leftarrow} \{0,1\}^n \\
\uparrow \downarrow \\
\emptyset_0 & \longrightarrow st \\
\end{array}$$

$$\begin{array}{c|c}
b & \stackrel{\$}{\leftarrow} \{0,1\}^n \\
\downarrow \\
(x^*, st) & \longrightarrow \\
\end{array}$$

$$\begin{array}{c|c}
H^b \\
\downarrow \\
\emptyset_1
\end{array}$$

$$H_{x^* \mapsto y^*}(x) = \begin{cases} y^* & x = x^* \\ H(x) & \text{else} \end{cases}$$

$$H^0 = H$$
$$H^1 = H_{x^* \mapsto v^*}$$

$$\begin{array}{c|cccc}
 & b & \stackrel{\$}{\leftarrow} \{0,1\} \\
 & x^* & \stackrel{\$}{\leftarrow} \{0,1\}^n \\
 & \uparrow \downarrow \\
 & & \downarrow \\
 & & \downarrow \\
 & & & \downarrow \\
 & & & \downarrow \\
 & & & & \downarrow \\
 & & & & \downarrow \\
 & & & & & \downarrow \\$$

Uniformly random function $H:\{0,1\}^n \to \{0,1\}^n$ two-stage oracle algorithm $\mathscr{A}=(\mathscr{A}_0,\mathscr{A}_1)$

$$H_{x^* \mapsto y^*}(x) = \begin{cases} y^* & x = x^* \\ H(x) & \text{else} \end{cases}$$

$$H^0 = H$$
$$H^1 = H_{x^* \mapsto y^*}$$

$$\begin{array}{c|cccc}
b & \stackrel{\$}{\leftarrow} \{0,1\} \\
x^* & \stackrel{\$}{\leftarrow} \{0,1\}^n \\
 & \downarrow \\$$

Query lower bound

Query lower bound

Theorem: For classical
$$\mathscr{A}$$
,
$$\Pr[\mathscr{A} \text{ wins}] \leq \frac{1}{2} \left(1 + q_0 2^{-n} \right)$$

Query lower bound

 \mathscr{A} wins if b' = b

Theorem: For classical
$$\mathscr{A}$$
,
$$\Pr[\mathscr{A} \text{ wins}] \leq \frac{1}{2} \left(1 + q_0 2^{-n} \right)$$

This is tight, matching algorithm using ${\cal O}(q_0)$ time, constant space, $q_1=q_0$

Security proofs in the ROM for digital signature schemes:

Security proofs in the ROM for digital signature schemes:

▶ Hash based signatures (XMSS, standardized as RFC 8391)

Security proofs in the ROM for digital signature schemes:

- ▶ Hash based signatures (XMSS, standardized as RFC 8391)
- Fiat-Shamir signatures

Security proofs in the ROM for digital signature schemes:

- ▶ Hash based signatures (XMSS, standardized as RFC 8391)
- Fiat-Shamir signatures
- ▶ The hedged Fiat-Shamir transformation
- etc.

CISCUCEdriving your security forward

About Riscure ▼ Industries ▼

Home 6 Fault Injection

Master the art of Fault Injection

Everything you need to know about the next generation hardware security threat.

Security proofs in the ROM for digital signature schemes:

- ▶ Hash based signatures (XMSS, standardized as RFC 8391)
- Fiat-Shamir signatures
- ▶ The hedged Fiat-Shamir transformation
- etc.

CISCUCEdriving your security forward

About Riscure ▼ Industries ▼

Home 6 Fault Injection

Master the art of Fault Injection

Everything you need to know about the next generation hardware security threat.

What about post-quantum security?

Theorem (Unruh '14):
$$\Pr[\mathscr{A} \text{ wins}] \leq \frac{1}{2} + O\left(q_0 2^{-\frac{n}{2}}\right)$$

 \mathscr{A} wins if b' = b

Tightness unlikely: \mathcal{A}_0 doesn't know what it is searching for \Rightarrow no Grover!

Results

 \mathscr{A} wins if b' = b

 \mathscr{A} wins if b' = b

Theorem (Grilo, Hövelmanns, Hülsing, CM):

$$\Pr[\mathscr{A} \text{ wins}] \le \frac{1}{2} + \frac{3}{2} \sqrt{q_0 2^{-n}}$$

 \mathscr{A} wins if b' = b

Theorem (Grilo, Hövelmanns, Hülsing, CM): $\Pr[\mathscr{A} \text{ wins}] \leq \frac{1}{2} + \frac{3}{2} \sqrt{q_0 2^{-n}}$

 $q_0 = \Omega\left(2^n\right)$ necessary for constant advantage

 \mathscr{A} wins if b' = b

Theorem (Grilo, Hövelmanns, Hülsing, CM):
$$\Pr[\mathscr{A} \text{ wins}] \leq \frac{1}{2} + \frac{3}{2} \sqrt{q_0 2^{-n}}$$
 + some generalizations

 $q_0 = \Omega\left(2^n\right)$ necessary for constant advantage

 \mathscr{A} wins if b' = b

Theorem (Grilo, Hövelmanns, Hülsing, CM):
$$\Pr[\mathscr{A} \text{ wins}] \leq \frac{1}{2} + \frac{3}{2} \sqrt{q_0 2^{-n}}$$
 + some generalizations

$$q_0 = \Omega\left(2^n\right)$$
 necessary for constant advantage

Theorem (Grilo, Hövelmanns, Hülsing, CM):

There exists a quantum algorithm that achieves

$$\Pr[\mathscr{A} \text{ wins}] = \frac{1}{2} + \Omega\left(\sqrt{q_0 2^{-n}}\right)$$

Tightness:

Tightness:

Theorem (Grilo, Hövelmanns, Hülsing, CM):

There exists a quantum algorithm that achieves

$$\Pr[\mathscr{A} \text{ wins}] = \frac{1}{2} + \Omega\left(\sqrt{q_0 2^{-n}}\right)$$

Reprogramming superposition oracles

For simplicity: $H: \{0,1\}^n \rightarrow \{0,1\}^n$

Random oracle

Superposition oracle (Zhandry '18)

For simplicity: $H: \{0,1\}^n \rightarrow \{0,1\}^n$

Random oracle

For each $x \in \{0,1\}^n$: $H(x) \leftarrow \{0,1\}^n$ Superposition oracle (Zhandry '18)

For simplicity: $H: \{0,1\}^n \rightarrow \{0,1\}^n$

Random oracle

For each $x \in \{0,1\}^n$: $H(x) \leftarrow \{0,1\}^n$ Superposition oracle (Zhandry '18)

For each $x \in \{0,1\}^n$: Initialize n-qubit register F_x in state $|\phi_0\rangle = |+\rangle^{\otimes n}$

For simplicity: $H: \{0,1\}^n \rightarrow \{0,1\}^n$

Random oracle

For each
$$x \in \{0,1\}^n$$
:
 $H(x) \leftarrow \{0,1\}^n$

Query unitary:

$$U_H |x\rangle_X |y\rangle_Y = |x\rangle_X |y \oplus H(x)\rangle_Y$$

Superposition oracle (Zhandry '18)

For each $x \in \{0,1\}^n$: Initialize n-qubit register F_x in state $|\phi_0\rangle = |+\rangle^{\otimes n}$

For simplicity: $H: \{0,1\}^n \rightarrow \{0,1\}^n$

Random oracle

For each
$$x \in \{0,1\}^n$$
:
 $H(x) \leftarrow \{0,1\}^n$

Query unitary:

$$U_H |x\rangle_X |y\rangle_Y = |x\rangle_X |y \oplus H(x)\rangle_Y$$

Superposition oracle (Zhandry '18)

For each
$$x \in \{0,1\}^n$$
:
Initialize n -qubit register F_x
in state $|\phi_0\rangle = |+\rangle^{\otimes n}$

Query unitary:

$$U_H |x\rangle_X = \text{CNOT}_{F_x:Y}^{\otimes n}$$

For simplicity: $H: \{0,1\}^n \rightarrow \{0,1\}^n$

Random oracle

For each
$$x \in \{0,1\}^n$$
:
 $H(x) \leftarrow \{0,1\}^n$

Query unitary:

$$U_H |x\rangle_X |y\rangle_Y = |x\rangle_X |y \oplus H(x)\rangle_Y$$

Reprogramming at x^* : $y^* \leftarrow \{0,1\}^n$, $H'(x) = \begin{cases} y^* & x = x^* \\ H(x) & \text{else} \end{cases}$

Superposition oracle (Zhandry '18)

For each $x \in \{0,1\}^n$: Initialize n-qubit register F_x in state $|\phi_0\rangle = |+\rangle^{\otimes n}$

Query unitary:

$$U_H |x\rangle_X = \text{CNOT}_{F_x:Y}^{\otimes n}$$

For simplicity: $H: \{0,1\}^n \rightarrow \{0,1\}^n$

Random oracle

For each
$$x \in \{0,1\}^n$$
:
 $H(x) \leftarrow \{0,1\}^n$

Query unitary:

$$U_H |x\rangle_X |y\rangle_Y = |x\rangle_X |y \oplus H(x)\rangle_Y$$

Reprogramming at
$$x^*$$
: $y^* \leftarrow \{0,1\}^n$,
$$H'(x) = \begin{cases} y^* & x = x^* \\ H(x) & \text{else} \end{cases}$$

Superposition oracle (Zhandry '18)

For each $x \in \{0,1\}^n$: Initialize n-qubit register F_x in state $|\phi_0\rangle = |+\rangle^{\otimes n}$

Query unitary:

$$U_H |x\rangle_X = \text{CNOT}_{F_x:Y}^{\otimes n}$$

Reprogramming at x^* :

- ullet Discard contents of F_{χ^*}
- Prepare F_{x^*} in state $|\phi_0\rangle$

Intuition: q_0 is limiting quantity

- Intuition: q_0 is limiting quantity
- ightharpoonup simplification: allow $q_1 = 2^n$

$$b \xleftarrow{\$} \{0,1\}$$
$$x^* \xleftarrow{\$} \{0,1\}^n$$
$$y^* \xleftarrow{\$} \{0,1\}^n$$

$$(x^*, st, H^b) \longrightarrow \emptyset$$

- Intuition: q_0 is limiting quantity
- \blacktriangleright simplification: allow $q_1 = 2^n$

Superposition oracle

- Intuition: q_0 is limiting quantity
- ightharpoonup simplification: allow $q_1 = 2^n$

For each $x \in \{0,1\}^n$:
Initialize n-qubit register F_x in state $|\phi_0\rangle = |+\rangle^{\otimes n}$

Query unitary:

$$U_H|x\rangle_X = \text{CNOT}_{F_x:Y}^{\otimes n}$$

$$b \xleftarrow{\$} \{0,1\}$$
$$x^* \xleftarrow{\$} \{0,1\}^n$$
$$y^* \xleftarrow{\$} \{0,1\}^n$$

$$\left(x^*, st, \left(F_x\right)_{x \in \{0,1\}^n}\right) \longrightarrow \boxed{\mathcal{A}_1}$$

- Intuition: q_0 is limiting quantity
- ightharpoonup simplification: allow $q_1 = 2^n$

Hand over oracle's internal state after potentially reprogramming:

Reprogramming at x^* :

- ullet Discard contents of F_{χ^*}
- ullet Prepare F_{χ^*} in state $|\phi_0\rangle$

- Intuition: q_0 is limiting quantity
- ightharpoonup simplification: allow $q_1 = 2^n$

Oracle distinguishing \rightarrow State discrimination!

- Intuition: q_0 is limiting quantity
- ightharpoonup simplification: allow $q_1 = 2^n$

Oracle distinguishing -> State discrimination!

Suffices to bound a trace norm distance (for arbitrary \mathcal{A}_0).

A matching algorithm

Classical algorithm

 \mathscr{A} wins if b' = b

Theorem:
$$\Pr[\mathscr{A} \text{ wins}] \leq \frac{1}{2} \left(1 + q_0 2^{-n} \right)$$

Classical algorithm

 \mathscr{A} wins if b' = b

Theorem:
$$\Pr[\mathscr{A} \text{ wins}] \leq \frac{1}{2} \left(1 + q_0 2^{-n} \right)$$

Matching algorithms:

Simple: query distinct inputs x_1, \ldots, x_{q_0} , store result, hope $x^* = x_i$ for some i

Classical algorithm

 \mathscr{A} wins if b' = b

Theorem:
$$\Pr[\mathscr{A} \text{ wins}] \leq \frac{1}{2} \left(1 + q_0 2^{-n} \right)$$

Matching algorithms:

- Simple: query distinct inputs x_1, \ldots, x_{q_0} , store result, hope $x^* = x_i$ for some i
- ▶ Constant space: \mathscr{A}_0 computes $H(x_0) \oplus H(x_1) \oplus \ldots \oplus H(x_{q_0-1})$, \mathscr{A}_1 checks

Theorem: For classical \mathcal{A} ,

$$\Pr[\mathscr{A} \text{ wins}] \le \frac{1}{2} \left(1 + q_0 2^{-n} \right)$$

Theorem (Grilo, Hövelmanns, Hülsing, CM):

There exists a quantum algorithm that achieves

$$\Pr[\mathscr{A} \text{ wins}] = \frac{1}{2} + \Omega\left(\sqrt{q_0 2^{-n}}\right)$$

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

- $\longrightarrow \mathscr{A}_1$ checks z

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

- $\longrightarrow \mathcal{A}_1$ checks z

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

- $\longrightarrow \mathcal{A}_1$ checks z

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

- $\longrightarrow \mathcal{A}_1$ checks z

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

- \blacktriangleright \mathscr{A}_1 tries to uncompute z, checks success

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

1.
$$\mathscr{A}_0$$
 prepares $|\phi_0\rangle = 2^{-\frac{n}{2}} \sum_{x \in \{0,1\}^n} |x\rangle_X |0\rangle_Y$

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

Quantum algorithm:

1.
$$\mathscr{A}_0$$
 prepares $|\phi_0\rangle = 2^{-\frac{n}{2}} \sum_{x \in \{0,1\}^n} |x\rangle_X |0\rangle_Y$

2. \mathcal{A}_0 repeats q_0 times:

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

1.
$$\mathscr{A}_0$$
 prepares $|\phi_0\rangle = 2^{-\frac{n}{2}} \sum_{x \in \{0,1\}^n} |x\rangle_X |0\rangle_Y$

- 2. \mathcal{A}_0 repeats q_0 times:
 - ightharpoonup query H

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

- 1. \mathscr{A}_0 prepares $|\phi_0\rangle = 2^{-\frac{n}{2}} \sum_{x \in \{0,1\}^n} |x\rangle_X |0\rangle_Y$
- 2. \mathcal{A}_0 repeats q_0 times:
 - ightharpoonup query H
 - ightharpoonup apply c to X

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

1.
$$\mathscr{A}_0$$
 prepares $|\phi_0\rangle = 2^{-\frac{n}{2}} \sum_{x \in \{0,1\}^n} |x\rangle_X |0\rangle_Y$

- 2. \mathcal{A}_0 repeats q_0 times:
 - ightharpoonup query H
 - ightharpoonup apply c to X
- 3. \mathcal{A}_1 tries to undo 2.

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

1.
$$\mathscr{A}_0$$
 prepares $|\phi_0\rangle = 2^{-\frac{n}{2}} \sum_{x \in \{0,1\}^n} |x\rangle_X |0\rangle_Y$

- 2. \mathcal{A}_0 repeats q_0 times:
 - ightharpoonup query H
 - ightharpoonup apply c to X
- 3. \mathcal{A}_1 tries to undo 2.

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

1.
$$\mathscr{A}_0$$
 prepares $|\phi_0\rangle = 2^{-\frac{n}{2}} \sum_{x \in \{0,1\}^n} |x\rangle_X |0\rangle_Y$

- 2. \mathcal{A}_0 repeats q_0 times:
 - ightharpoonup query H
 - ightharpoonup apply c to X
- 3. \mathcal{A}_1 tries to undo 2.

$$S = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

Quantum algorithm:

1.
$$\mathscr{A}_0$$
 prepares $|\phi_0\rangle = 2^{-\frac{n}{2}} \sum_{x \in \{0,1\}^n} |x\rangle_X |0\rangle_Y$

- 2. \mathcal{A}_0 repeats q_0 times:
 - query H
 - ightharpoonup apply c to X
- 3. \mathcal{A}_1 tries to undo 2.

Result: $|\phi_b\rangle$, with

$$|\phi_1\rangle = 2^{-\frac{n}{2}} \left(\sum_{x \in S} |x\rangle| H(x^*) \oplus y^*\rangle + \sum_{x \notin S} |x\rangle| 0\rangle \right)$$

$$S = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

Idea: use classical "checksum algorithm" for a superposition of sets of q_0 inputs

Quantum algorithm:

1.
$$\mathscr{A}_0$$
 prepares $|\phi_0\rangle = 2^{-\frac{n}{2}} \sum_{x \in \{0,1\}^n} |x\rangle_X |0\rangle_Y$

- 2. \mathcal{A}_0 repeats q_0 times:
 - query H
 - ightharpoonup apply c to X
- 3. \mathcal{A}_1 tries to undo 2.

Result: $|\phi_b\rangle$, with

$$|\phi_1\rangle = 2^{-\frac{n}{2}} \left(\sum_{x \in S} |x\rangle| H(x^*) \oplus y^*\rangle + \sum_{x \notin S} |x\rangle| 0\rangle \right)$$

$$\left\| |\phi_0\rangle - |\phi_1\rangle \right\| = \sqrt{2q_0 2^{-n}}$$

$$S = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

Summary

- ▶ Tight characterization of "adaptive reprogramming" oracle distinguishing task in the quantum setting
- Informs NIST competition for post-quantum crypto schemes
- Proof based on simplest version of Zhandry's superposition oracle
- Efficient algorithm matching the bound.

Thanks!

