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The superposition oracle

For simplicity: H : {0,1}" = {0,1}"

Random oracle Superposition oracle (Zhandry "18)

For each x € {0,1}":
Initialize n-qubit register F,
in state |¢y) = | + )®”

For each x € {0,1}":
H(x) < {0,1}"

Query unitary: Query unitary:
Uyl X)x|y)y = [X)x|y @ H(x))y Uylx)x = CNOT%’?Y
Reprogramming at x*: y* < {0,1}", Reprogramming at x*:

H'(x) = y* X =x* ® Discard contents of F .
H(x) else ® Prepare F . in state | ¢,)
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A

—> St

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

b (0.1)
X & 0,1}

yE & {0,1)"

(x*, st, H?) —»

— b’



Proof ideas

<Fx)x€{0,1}”

55

oA, | — St

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

Su.per posi&om oracle

b (0.1)
X & 0,1}

yE & {0,1)"

(X*a St, Hb) — 52{1

“Foreachx € {0,1}*
Initialize n-qubit register F,
in state |¢y) = | + )®”

Query unitary:



Proof ideas

(Fx)xE{O,l}”

55

A

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

—> St

b (0.1)
X & 0,1}

yE & {0,1)"

(x*,st, <Fx)xe{0,1}”) - o) — b’

Hand over oracle’s inkernal
state after potentially
reprogramming:

Reprogramming at x™:
® Discard contents of F .

® Prepare F. in state |¢) ./



Proof ideas
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b < {0,1}
F
( x)xe{O,l}” xF <$; 10,1}"
w 3 0.11"
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5270 — St ('x*a St, <Fx)x€{0,1}n) — 7
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Proof ideas

$
b < {0,1}
(Fx)xe{o,l}” xF <$; 10,1}"
w 3 0.1}
g
5270 — St ('x*a St, <Fx)x€{0,1}n) — 7

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

Oracle distinguishing — State discrimination!

Suffices to bound a trace norm distance (for arbitrary ).

— b’



A matching algorithm



Classical algorithm

b 0.1
H X & (0,1} Hb
S
y* < {0,1}"
1 tl @
oA, | —> St (x*,st) —> o — b’
A winsifb' =b
Theorem:

Pr[<f wins] < % (1 + q02_”)




Classical algorithm

bE 10,1
H & 0,1y HY
$
y* < {0,1}"
t 1 9 tl @
tdo — SI (X*a‘gt) —r ‘Qil — b/
g winsitb' = b
Theorem:
1
Pr[&f wins] < > (1 + q02_”)
Matching algorithms:

» Simple: query distinct inputs xy, ..., X, , store result, hope x* = x; for some i




Classical algorithm

b < (0,1)
H v+ & (0,1)" HY
$
y* < {0,1}"
t 1 9 tl @
od, |— St (x*,st) — A, — b’
A winsifb’'=b
Theorem:
1
Pr[&f wins] < > (1 + q02_”)
Matching algorithms:
» Simple: query distinct inputs xy, ..., X, , store result, hope x* = x; for some i

» Constant space: &/, computes H(xy) @ H(x;) D ... D H(xqo_l), o | checks



Quantum algorithm

Theorem: For classical &,

Prl/ wins] < — (1

Theorem (Grilo, Hovelmanns, Hulsing, CM):
There exists a quantum algorithm that achieves

1 /
Pr[<f wins] = 5 + Q1




Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs
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Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Classical algorithm:
» o, computes z = H(xy) @ H(c(x)) @ ... H H(cD (xy))
» & checks z
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Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Classical algorithm:
» o, computes z = H(xy) @ H(c(x)) @ ... ® H(cD ! (xy))
» & tries to uncompute z, checks success

)
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Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares |¢y) =272 Z |1 X)x|0)y

xe{0,1}"
2. &, repeats g, times:
» query H
» apply cto X
3. & tries to undo 2.
Result: | ¢y,), with
( \
[y > =272 Y [x) [ H¥) @ y*) + ) |x)]0)
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S={e,0,0,0, 0 0}



Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares | ) =272 2 %)y | 0y

xe{0,1}"
2. &, repeats g, times:
» query H
» apply cto X
3. & tries to undo 2.
Result: | ¢,), with
( )
|y >=272 Z | xX) [ H(x*) @ y*) + Z | x)]0)
\xeS x&S )

H|¢o>—|¢1>”=\/2qo2_” S={e,0,0,0, 0 0}



Summary

» Tight characterization of "adaptive reprogramming” oracle
distinguishing task in the quantum setting

» Informs NIST competition for post-quantum crypto schemes

» Proof based on simplest version of Zhandry's superposition oracle

» Efficient algorithm matching the bound.



Thanlkes!

— St

b & 0,1}
& 01y

¥ & (0,1}

(y*,st) —




