Adaptive Reprogramming in the QROM

QIP 2012
Virtual

Alex Grilo, Kathrin Hovelmanns, Andreas Hulsing and
Christian Majenz

Outline

» Motivation — the quantum random oracle model
» The adaptive reprogramming game

» Results

» Reprogramming superposition oracles

» A matching algorithm

Motivation — The Quantum
Random Oracle Model (QROM)

Hash functions

Hash functions are everywhere in crypto

/\ | Vvebn
\ HHLM

Hash functions

Hash functions are everywhere in crypto

» Digital signatures

» Message authentication

» Chosen-ciphertext security
» Commitments

> ...

Hash functions

Hash functions are everywhere in crypto

» Digital signatures

» Message authentication

» Chosen-ciphertext security
» Commitments

> ...

Comcep&: s&m[@t@

Hash functions

Hash functions are everywhere in crypto

» Digital signatures

» Message authentication

» Chosen-ciphertext security
» Commitments

> ...

/\ ‘ Vvebn
\ HHLM

Proving security:
Hard

Comcep&: sLmFaLe

Hash functions

Hash functions are everywhere in crypto

» Digital signatures

» Message authentication

» Chosen-ciphertext security
» Commitments

> ...

/\ ‘ Vvebn
\ HHLM

Proving security:

Comcep&: sLmFaLe Hard

Solution: ',
| (Quantum) Random Oracle Model

Random Oracle Model

|dealized model of cryptographic hash functions

Random Oracle Model

|dealized model of cryptographic hash functions

Realit

©® O ® \ sHA-3-Wikipedia X +
q @ A & enwikipedia.org/wiki/SHA-3#Examples_of SHA-3_variants QO A0 = S UL @3B &
p 5 & Notlogged in Talk Contributions Create account Log in
i
G
L Q Article Talk Read Edit View history | Search Wikipedia Q
W
Wi)}
aal
WikpeptA ~ SHA-3
U From Wikipedia, the free encyclopedia
(Redirected from Sha 3)
Main page
e SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015.1I%] Socure Hash Aleorithms
Featured content Ailthough part of the same series of standards, SHA-3 is internally different from the MD5-like structure of SHA-1 and SHA-2. 9
Current events Concepts

e ——— SHA-3 is a subset of the broader cryptographic primitive family Keccak (/ketfaek, -a/), 117! designed by Guido Bertoni, Joan Daemen, Michaél Peeters,

Donate to Wikipedia and Gilles Van Assche, building upon RadioGat(in. Keccak's authors have proposed additional uses for the function, not (yet) standardized by NIST,

Wikipedia store including a stream cipher, an authenticated encryption system, a "tree" hashing scheme for faster hashing on certain architectures,®!® and AEAD
ciphers Keyak and Ketje.!%I"")

hash functions - SHA - DSA
Main standards
SHA-0 - SHA-1 - SHA-2 - SHA-3

Interaction are
el Keccak is based on a novel approach called sponge construction.!"2 Sponge construction is based on a wide random function or random permutation, Ve
As:m e and allows inputting ("absorbing" in sponge terminology) any amount of data, and outputting ("squeezing") any amount of data, while acting as a SHA-3

Community portal pseudorandom function with regard to all previous inputs. This leads to great flexibilty. (Keccak)

Recent changes NIST does not currently plan to withdraw SHA-2 or remove it from the revised Secure Hash Standard. The purpose of SHA-3 is that it can be o]

St PR directly substituted for SHA-2 in current applications if necessary, and to significantly improve the robustness of NIST's overall hash algorithm Designers Guido Bertoni, Joan Dacmen

Tools toolkit.3! Michaél Peeters, and Gilles Van
Assche.

What links here The creators of the Keccak algorithms and the SHA-3 functions suggest using the faster function KangarooTwelve with adjusted parameters and a ssche:

Related changes new tree hashing mode without extra overhead for small message sizes. GLE3 2016

Upload fle published

Special pages Contents [hide] Series (SHA-0), SHA-1, SHA-2, SHA-3

Permanent link

Download as PDF

1 History Certification FIPS PUB 202

Page information
Detail

Wikidata tem 8 LEzR v
Cite this page 3 Padding Digest sizes arbitrary

4 The block permutation Structure sponge construction
Prinvexport 5 Speed Speed 12.6 cpb on a typical x86-64-
Create a book 6 Instances based machine for Keccak-

7

11600] plus XORing 1024 bits "}
Additional instances. X

Random Oracle Model

|dealized model of cr

Reality

® O ® \ sHA-3-Wikipedia x B8

d [¢]

WIKIPEDIA

‘The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Prinvexport

Create a book
Download as PDF

0 & enwikipedia.org/wiki/SHA-3#Examples_of SHA-3_variants T A0

& Notlogged in Talk Contributions Create account Log in

Article Talk Read Edit View history | Search Wikipedia

SHA-3

From Wikipedia, the free encyclopedia
(Redirected from Sha 3)

SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015.14/%!
Although part of the same series of standards, SHA-3 s internally different from the MD5-like structure of SHA-1 and SHA-2.

EEeUea@n &

SHA-3 is a subset of the broader cryptographic primitive family Keccak (/ketfaek, -a/), 117! designed by Guido Bertoni, Joan Daemen, Michaél Peeters,

and Gilles Van Assche, building upon RadioGatin. Keccak's authors have proposed additional uses for the function, not (yet) standardized by NIST,
including a stream cipher, an authenticated encryption system, a "tree" hashing scheme for faster hashing on certain architectures,®®! and AEAD
ciphers Keyak and Ketje.!%I"")

Keccak is based on a novel approach called sponge construction.!"2 Sponge construction is based on a wide random function or random permutation,
and allows inputting ("absorbing" in sponge terminology) any amount of data, and outputting ("squeezing") any amount of data, while acting as a
pseudorandom function with regard to all previous inputs. This leads to great flexibilty.

NIST does not currently plan to withdraw SHA-2 or remove it from the revised Secure Hash Standard. The purpose of SHA-3 is that it can be

directly substituted for SHA-2 in current applications if necessary, and to significantly improve the robustness of NIST's overall hash algorithm
toolkit.(%]

The creators of the Keccak algorithms and the SHA-3 functions suggest using the faster function KangarooTwelve with adjusted parameters and a
new tree hashing mode without extra overhead for small message sizes.

Contents [hide]
1 History
2 Design
3 Padding
4 The block permutation
5 Speed
6 Instances
7

Additional instances

Secure Hash Algorithms
Concepts
hash functions - SHA - DSA
Main standards
SHA-0 - SHA-1 - SHA-2 - SHA-3

veTeE

SHA-3
(Keccak)

General

Designers Guido Bertoni, Joan Daemen,

Michaé! Peeters, and Gilles Van

Assche.
First 2015
published
Series (SHA-0), SHA-1, SHA-2, SHA3

Certification FIPS PUB 202

Detail

Digest sizes arbitrary

Structure sponge construction

Speed

12.6 cpb on a typical x86-64-
based machine for Keccak-
1[1600] plus XORing 1024 bits,!"!

Q

ptographic hash functions

Model

10,1}* = {0,1}"

niformly random

All agents have
black-box access to

Random Oracle Model

|dealized model of cr

Reality

® O ® \ sHA-3-Wikipedia x B8

d [¢]

WIKIPEDIA

‘The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Prinvexport

Create a book
Download as PDF

N & enwikipedia.org/wiki/SHA-3#Examples_of SHA-3_variants o A0 -] © L e@np &

& Notlogged in Talk Contributions Create account Log in

Article Talk Read Edit View history | Search Wikipedia

SHA-3

From Wikipedia, the free encyclopedia
(Redirected from Sha 3)

SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015.14/%!
Although part of the same series of standards, SHA-3 s internally different from the MD5-like structure of SHA-1 and SHA-2.

SHA-3 is a subset of the broader cryptographic primitive family Keccak (/ketfaek, -a/), 117! designed by Guido Bertoni, Joan Daemen, Michaél Peeters,
and Gilles Van Assche, building upon RadioGatin. Keccak's authors have proposed additional uses for the function, not (yet) standardized by NIST,
including a stream cipher, an authenticated encryption system, a "tree" hashing scheme for faster hashing on certain architectures,®®! and AEAD
ciphers Keyak and Ketje.!%I"")

Keccak is based on a novel approach called sponge construction.!"2 Sponge construction is based on a wide random function or random permutation,
and allows inputting ("absorbing" in sponge terminology) any amount of data, and outputting ("squeezing") any amount of data, while acting as a
pseudorandom function with regard to all previous inputs. This leads to great flexibilty.

NIST does not currently plan to withdraw SHA-2 or remove it from the revised Secure Hash Standard. The purpose of SHA-3 is that it can be

directly substituted for SHA-2 in current applications if necessary, and to significantly improve the robustness of NIST's overall hash algorithm
toolkit.(%]

Secure Hash Algorithms
Concepts
hash functions - SHA - DSA
Main standards
SHA-0 - SHA-1 - SHA-2 - SHA-3

v

SHA-3
(Keccak)

General

Designers Guido Bertoni, Joan Daemen,

Michaé! Peeters, and Gilles Van

Q

e

Assche.
The creators of the Keccak algorithms and the SHA-3 functions suggest using the faster function KangarooTwelve with adjusted parameters and a ssche.
new tree hashing mode without extra overhead for small message sizes. st 2015
published
Contents [hide] Series (SHA-0), SHA-1, SHA-2, SHA-3
1 History Certification FIPS PUB 202
2 Design Detail
3 Padding Digest sizes arbitrary
4 The block permutation Structure sponge construction
5 Speed Speed 12.6 cpb on a typical x86-64-
6 Instances based machine for Keccak-
1[1600] plus XORing 1024 bits,!"!
7_Additional instances

+ Simpler proofs

ptographic hash functions

Model

:{0,1}* = {0,1}"

niformly random

Il agents have
black-box access to

Random Oracle Model

|dealized model of cr

® O ® \ sHA-3-Wikipedia x B8

d [¢]

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Prinvexport

Create a book
Download as PDF

Reality

N & enwikipedia.org/wiki/SHA-3#Examples_of_SHA-3_variants

Article Talk

SHA-3

From Wikipedia, the free encyclopedia
(Redirected from Sha 3)

ptographic hash functions

o » = LU ea@ip &
& Notlogged in Talk Contributions Create account Log in
Read Edit View history | Search Wikipedia Q

SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015.14/%!
Although part of the same series of standards, SHA-3 s internally different from the MD5-like structure of SHA-1 and SHA-2.

SHA-3 is a subset of the broader cryptographic primitive family Keccak (/ketfaek, -a/), 117! designed by Guido Bertoni, Joan Daemen, Michaél Peeters,

Secure Hash Algorithms
Concepts
hash functions - SHA - DSA

and Gilles Van Assche, building upon RadioGatin. Keccak's authors have proposed additional uses for the function, not (yet) standardized by NIST,

including a stream cipher, an authenticated encryption system, a "tree" hashing scheme for faster hashing on certain architectures,®!®! and AEAD

ciphers Keyak and Ketje.!%I"")

Keccak is based on a novel approach called sponge construction."? Sponge construction is based on a wide random function or random permutation,
and allows inputting ("absorbing" in sponge terminology) any amount of data, and outputting ("squeezing") any amount of data, while acting as a

pseudorandom function with regard to all previous inputs. This leads to great flexibilty.

NIST does not currently plan to withdraw SHA-2 or remove it from the revised Secure Hash Standard. The purpose of SHA-3 is that it can be
directly substituted for SHA-2 in current applications if necessary, and to significantly improve the robustness of NIST's overall hash algorithm

toolkit.(%]

Main standards
SHA-0 - SHA-1 - SHA-2 - SHA-3

SHA-3
(Keccak)
General

Designers Guido Bertoni, Joan Daemen,
Michaé! Peeters, and Gilles Van

The creators of the Keccak algorithms and the SHA-3 functions suggest using the faster function KangarooTwelve with adjusted parameters and a
new tree hashing mode without extra overhead for small message sizes.

Contents [hide]
1 History
2 Design
3 Padding
4 The block permutation
5 Speed
6 Instances
7

Additional instances

+ Simpler proofs

+ More efficient constructions with prova

Assche.
First 2015
published
Series (SHA-0), SHA-1, SHA-2, SHA3
Certification FIPS PUB 202
Detail

Digest sizes arbitrary

Structure sponge construction

Speed 12.6 cpb on a typical x86-64-
based machine for Keccak-
1{1600] plus XORing 1024 bits, "

Model

:{0,1}* = {0,1}"

niformly random

Il agents have
black-box access to

ble security

Quantum Random Oracle Model

Attackers with quantum computer can evaluate hash function on it!

® 0 ® w sHA-3- Wikipedia

d [¢]

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Prinvexport

Create a book
Download as PDF

a

Article Talk

Reality

x +

@ en.wikipedia.org/wiki/SHA-3#Examples_of_SHA-3_variants

SHA-3

From Wikipedia, the free encyclopedia
(Redirected from Sha 3)

o EEeUea@n &

Read Edit

& Notlogged in Talk Contributions Create account Log in

View history | Search Wikipedia Q

SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015.14/%!
Although part of the same series of standards, SHA-3 s internally different from the MD5-like structure of SHA-1 and SHA-2.

SHA-3 is a subset of the broader cryptographic primitive family Keccak (/ketfaek, -a/), 117! designed by Guido Bertoni, Joan Daemen, Michaél Peeters,

Secure Hash Algorithms
Concepts
hash functions - SHA - DSA

and Gilles Van Assche, building upon RadioGatin. Keccak's authors have proposed additional uses for the function, not (yet) standardized by NIST,

including a stream cipher, an authenticated encryption system, a "tree" hashing scheme for faster hashing on certain architectures,®!®! and AEAD

ciphers Keyak and Ketje.!%I"")

Keccak is based on a novel approach called sponge construction.!"2 Sponge construction is based on a wide random function or random permutation,
and allows inputting ("absorbing" in sponge terminology) any amount of data, and outputting ("squeezing") any amount of data, while acting as a
pseudorandom function with regard to all previous inputs. This leads to great flexibilty.

NIST does not currently plan to withdraw SHA-2 or remove it from the revised Secure Hash Standard. The purpose of SHA-3 is that it can be

directly substituted for SHA-2 in current applications if necessary, and to significantly improve the robustness of NIST's overall hash algorithm

toolkit.(%]

Main standards
SHA-0 - SHA-1 - SHA-2 - SHA-3

SHA-3
(Keccak)
General

Designers Guido Bertoni, Joan Daemen,
Michaé! Peeters, and Gilles Van

The creators of the Keccak algorithms and the SHA-3 functions suggest using the faster function KangarooTwelve with adjusted parameters and a
new tree hashing mode without extra overhead for small message sizes.

History
Design
Padding

Speed

Contents [hide]

Instances

Additional instances

1
2
3
4 The block permutation
5
6
7

Assche.
First 2015
published
Series (SHA-0), SHA-1, SHA-2, SHA3
Certification FIPS PUB 202
Detail

Digest sizes arbitrary

Structure sponge construction

Speed 12.6 cpb on a typical x86-64-
based machine for Keccak-
1{1600] plus XORing 1024 bits, "

Quantum Random Oracle Model (Bone

Model

10,1}* = {0,1}"

niformly random

Il agents have quantum
black-box access to H

hetal. "10

» Security reductions are quantum algorithms

» Quantum query complexity

The adaptive reprogramming
game

The game (simplest version)

Uniformly random function H : {0,1}" — {0,1}"
two-stage oracle algorithm & = (), &)

The game (simplest version)

Uniformly random function H : {0,1}" — {0,1}"
two-stage oracle algorithm & = (), &)

K

‘Q[O —> SI

The game (simplest version)

Uniformly random function H : {0,1}" — {0,1}"
two-stage oracle algorithm & = (), &)

b 0.1
H X & (0,1}

$
y* < (0,1}
K

‘Q[O —> SI

The game (simplest version)

Uniformly random function H : {0,1}" — {0,1}"
two-stage oracle algorithm & = (), &)

o 0 = yE o x = x*
ATy H(x) else

b 0.1
H X & (0,1}

$
y* < (0,1}
K

‘Q[O —> SI

The game (simplest version)

Uniformly random function H : {0,1}" — {0,1}"
two-stage oracle algorithm & = (), &)

o 0 = yE o x = x*
ATy H(x) else

H'=H
H'=H_ .
b (0.1
H X & (0,1}
yE & {0,1)"

(Q[() —> SI

The game (simplest version)

Uniformly random function H : {0,1}" — {0,1}"
two-stage oracle algorithm & = (), &)

o 0 = yE o x = x*
ATy H(x) else

H'=H
H'=H_ .
b (0.1
H X & (0,1}
yE & {0,1)"

Ay | — St (x*,st) —>

The game (simplest version)

Uniformly random function H : {0,1}" — {0,1}"
two-stage oracle algorithm & = (), &)

o 0 = yE o x = x*
ATy H(x) else

H'=H
1 _
H'=Hg.,_ .
b (0.1
H X & (0,1} HP
y* & {0,1}"

‘Q[O —> S ('X*9St) — ‘Qil

— b’

The game (simplest version)

Uniformly random function H : {0,1}" — {0,1}"
two-stage oracle algorithm & = (), &)

o 0 = yE o x = x*
ATy H(x) else

H=H
1 _
H'=H,._ .
b (0.1
H X & (0,1} 2L
T l y* & {0,1}" T l
‘Q[O —> St ('X*9St) —> ‘Qil

o wins it b’ =b

Query lower bouna

H

IR

A

A winsitb'=b

—> St

b (01)
X & 0,1}

yE & {0,1)"

(x*, s1) —>

— b’

Query lower bouna

H

IR

A

A winsitb'=b

—> St

b (01)
X & 0,1} H?
$
y* < {0,1}"
tla
(x*,s1) — o

Theorem: For classical &,

Pr[<f wins] <

1

2

(1 + q02_”)

Query lower bouna

H

IR

A

A winsitb'=b

—> St

b (01)
X & 0,1} H?
$
y* < {0,1}"
tla
(x*,s1) — o

— b’

Theorem: For classical &,

1
Pr[<f wins] < 5

(1 + q02_”)

This is tight, matching algorithm using O(g,) time, constant space, ¢, = ¢

Applications

Applications

Security proofs in the ROM for digital signature schemes:

Applications

Security proofs in the ROM for digital signature schemes:
» Hash based signatures (XMSS, standardized as RFC 8391)

Applications

Security proofs in the ROM for digital signature schemes:
» Hash based signatures (XMSS, standardized as RFC 8391)
» Fiat-Shamir signatures

Applications

Security proofs in the ROM for digital signature schemes:

» Hash based signatures (XMSS, standardized as RFC 8391)
» Fiat-Shamir signatures

» The hedged Fiat-Shamir transformation
p etc.

riIscurc About Riscure ¥ Industries ¥

driving your security forward

Home € Fault Injection

Master the art of
Fault Injection

Everything you need to know about the next generation hardware

security threat.

Getin touchwithus —

Applications

Security proofs in the ROM for digital signature schemes:

» Hash based signatures (XMSS, standardized as RFC 8391)
» Fiat-Shamir signatures

» The hedged Fiat-Shamir transformation
p eftc.

riIscurc About Riscure ¥ Industries ¥

driving your security forward

H ¢ FaultInject

Master the art of
Fault Injection

Everything you need to know about the next generation hardware
security threat.

Getin touchwithus —

Quantum query lower bound

T

A

A winsitb'=b

— St

b 0.1
X & (0,1}

yE & {0,1)"

(X*a St) —

Quantum query lower bound

go — 57

A winsitb'=b

H X & (0,1}

$
y* < {0,1}"

b 0.1

(-X*a St) —

Theorem (Unruh '14):

1 2
Pr[&f wins] < > + O (q02_7>

Quantum query lower bound

T

A

A winsitb'=b

— St

b 0.1
X & (0,1}

$
y* < {0,1}"

(-X*a St) —

— b’

Theorem (Unruh '14):

1 2
Pr[&f wins] < > + O (q02_7>

qo= O <2%> allows for constant advantage

W
!

Quantum query lower bound

T

A

A winsitb'=b

— St

b 0.1
X & (0,1}

$
* < {0,1}"

(-X*a St) —

— b’

Theorem (Unruh '14):

1 2
Pr[&f wins] < > + O (q02_7>

qo= O <2%> allows for constant advantage

W
!

Tightness unlikely: &, doesn’t know what it is searching for = no Grover!

Results

Tight quantum query lower bound

sl

A

o winsifb'=b

— 57

b 0.1
X & (0,1}

yE & {0,1)"

(x*,st) —

Hb

Y]

Tight quantum query lower bound

sl

A

o winsifb'=b

— 57

b 0.1
X & (0,1}

yE & {0,1)"

(x*,st) —

— b’

Theorem (Grilo, Hovelmanns, Hulsing, CM):

1 3
Pr|<f wins] < — + — 27N
[wi]_2 2\/Clo

Tight quantum query lower bound

b 0.1
H X & (0,1} H"
$
y* < {0,1}"
@ 90 C@@%
Q[O — St (x,st) — 'Qil

o winsifb'=b

Theorem (Grilo, Hovelmanns, Hulsing, CM):

1 3
Pr[<of wi < —4—=1/qp2™"
|/ wins] < 775 90

qo = Q (2”) necessary for constant advantage

Tight quantum query lower bound

b 0.1
H X & (0,1} H"
$
y* < {0,1}"
@ 90 C@@%
d, |— St (x*, st) — A, — b’

A winsitb'=b
Theorem (Grilo, Hovelmanns, Hulsing, CM):
. 1 3 _ + soOwWe
Prle/ wins] < 5 + 5 G2 generalizations

qo = 2 (2”) necessary for constant advantage

Tight quantum query lower bound

b 0.1
H X & (0,1} H"
$
y* < {0,1}"
@ 90 C@@Ch
o, |— st (x*, 5t) —» o, D

A winsitb'=b
Theorem (Grilo, Hovelmanns, Hulsing, CM):
. 1 3 _ + sowe
Pr{a/ wins] < 5 + 5 G2 generalizations

qo = 2 (2”) necessary for constant advantage

Theorem (Grilo, Hovelmanns, Hulsing, CM):
There exists a quantum algorithm that achieves

Prl.e/ wins] = % +0 (Va2

Tightness:

Tight quantum query lower bound

b (0.1
H & (0,1} HY
$
*— {0,1}"
R
W] e et
o wins it b’ = b - ?'('C? ‘A&% L
o < S .Wﬁk 3 _ + some
’YLC)V&@‘ e T@ﬁ’ v s 9 + 9 902 generalizations
QLQV\’O\ iy = € (2”) necessary for constant advantage

Tightness:

Theorem (Grilo, Hovelmanns, Hulsing, CM):
There exists a quantum algorithm that achieves

Pr[</ wins] = % + Q (W)

Reprogramming superposition
oracles

The superposition oracle

For simplicity: H : {0,1}" = {0,1}"

Random oracle Superposition oracle (Zhandry "18)

The superposition oracle

For simplicity: H : {0,1}" = {0,1}"

Random oracle Superposition oracle (Zhandry "18)

For each x € {0,1}":
H(x) < {0,1}"

The superposition oracle

For simplicity: H : {0,1}" = {0,1}"

Random oracle

For each x € {0,1}":
H(x) < {0,1}"

Superposition oracle (Zhandry

For each x € {0,1}":
Initialize n-qubit register F,
in state |¢y) = | +)®”

"18)

The superposition oracle

For simplicity: H : {0,1}" = {0,1}"

Random oracle Superposition oracle (Zhandry "18)

For each x € {0,1}":
Initialize n-qubit register F,
in state |¢y) = | +)®”

For each x € {0,1}":
H(x) < {0,1}"

Query unitary:
Uyl x)x|y)y = [xX)x|y @ HX))y

The superposition oracle

For simplicity: H : {0,1}" = {0,1}"

Random oracle Superposition oracle (Zhandry "18)

For each x € {0,1}":
Initialize n-qubit register F,
in state |¢y) = | +)®”

For each x € {0,1}":
H(x) < {0,1}"

Query unitary: Query unitary:
Uyl X)x|y)y = [X)x|y @ H(x))y Uylx)x = CNOT%’?Y

The superposition oracle

For simplicity: H : {0,1}" = {0,1}"

Random oracle Superposition oracle (Zhandry "18)

For each x € {0,1}":
Initialize n-qubit register F,
in state |¢y) = | +)®”

For each x € {0,1}":
H(x) < {0,1}"

Query unitary: Query unitary:
Unl0)x|y)y = 1x)x|y @ HX))y Uylx)x = CNOTZY,

Reprogramming at x*: y* « {0,1}",

) yE o x = x%
() = H(x) else

The superposition oracle

For simplicity: H : {0,1}" = {0,1}"

Random oracle Superposition oracle (Zhandry "18)

For each x € {0,1}":
Initialize n-qubit register F,
in state |¢y) = | +)®”

For each x € {0,1}":
H(x) < {0,1}"

Query unitary: Query unitary:
Uyl X)x|y)y = [X)x|y @ H(x))y Uylx)x = CNOT%’?Y
Reprogramming at x*: y* < {0,1}", Reprogramming at x*:

H'(x) = y* X =x* ® Discard contents of F .
H(x) else ® Prepare F . in state | ¢,)

Proof ideas

o

—> St

b (0.1)
X & 0,1}

yE & {0,1)"

(x*, s1) —>

Proof ideas

o

A

» Intuition: g, is limiting quantity

—> St

b (0.1)
X & 0,1}

yE & {0,1)"

(x*,st) —

55

S N\J

— b’

Proof ideas

5

A

—> St

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

b (0.1)
X & 0,1}

yE & {0,1)"

(x*,s1) —

55

S N\J

— b’

Proof ideas

5

A

—> St

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

b (0.1)
X & 0,1}

yE & {0,1)"

(x*, st, H?) —»

— b’

Proof ideas

<Fx)x€{0,1}”

55

oA, | — St

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

Su.per posi&om oracle

b (0.1)
X & 0,1}

yE & {0,1)"

(X*a St, Hb) — 52{1

“Foreachx € {0,1}*
Initialize n-qubit register F,
in state |¢y) = | +)®”

Query unitary:

Proof ideas

(Fx)xE{O,l}”

55

A

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

—> St

b (0.1)
X & 0,1}

yE & {0,1)"

(x*,st, <Fx)xe{0,1}”) - o) — b’

Hand over oracle’s inkernal
state after potentially
reprogramming:

Reprogramming at x™:
® Discard contents of F .

® Prepare F. in state |¢) ./

Proof ideas

$
b < {0,1}
F
(x)xe{O,l}” xF <$; 10,1}"
w 3 0.11"
Eéié?% moy
5270 — St ('x*a St, <Fx)x€{0,1}n) — 7

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

Oracle distinguishing — State discrimination!

— b’

Proof ideas

$
b < {0,1}
(Fx)xe{o,l}” xF <$; 10,1}"
w 3 0.1}
g
5270 — St ('x*a St, <Fx)x€{0,1}n) — 7

» Intuition: g, is limiting quantity

» simplification: allow g, = 2"

Oracle distinguishing — State discrimination!

Suffices to bound a trace norm distance (for arbitrary).

— b’

A matching algorithm

Classical algorithm

b 0.1
H X & (0,1} Hb
S
y* < {0,1}"
1 tl @
oA, | —> St (x*,st) —> o — b’
A winsifb' =b
Theorem:

Pr[<f wins] < % (1 + q02_”)

Classical algorithm

bE 10,1
H & 0,1y HY
$
y* < {0,1}"
t 1 9 tl @
tdo — SI (X*a‘gt) —r ‘Qil — b/
g winsitb' = b
Theorem:
1
Pr[&f wins] < > (1 + q02_”)
Matching algorithms:

» Simple: query distinct inputs xy, ..., X, , store result, hope x* = x; for some i

Classical algorithm

b < (0,1)
H v+ & (0,1)" HY
$
y* < {0,1}"
t 1 9 tl @
od, |— St (x*,st) — A, — b’
A winsifb’'=b
Theorem:
1
Pr[&f wins] < > (1 + q02_”)
Matching algorithms:
» Simple: query distinct inputs xy, ..., X, , store result, hope x* = x; for some i

» Constant space: &/, computes H(xy) @ H(x;) D ... D H(xqo_l), o | checks

Quantum algorithm

Theorem: For classical &,

Prl/ wins] < — (1

Theorem (Grilo, Hovelmanns, Hulsing, CM):
There exists a quantum algorithm that achieves

1 /
Pr[<f wins] = 5 + Q1

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Classical algorithm:
p o computes z = H(xy) @ Hx)) @ ... S H(x,_,)
» &/ checks z

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Classical algorithm:
p o computes z = H(xy) @ Hx)) @ ... S H(x,_,)
» &/ checks z

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Classical algorithm:
p o computes z = H(xy) @ Hx)) @ ... S H(x,_,)
» &/ checks z

)

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Classical algorithm:
» o, computes z = H(xy) @ H(c(x)) @ ... H H(cD (xy))
» & checks z

)

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Classical algorithm:
» o, computes z = H(xy) @ H(c(x)) @ ... ® H(cD ! (xy))
» & tries to uncompute z, checks success

)

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

)

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares |¢y) =272 Z |1 X)x|0)y
xe{0,1}"

)

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares |¢y) =272 Z |1 X)x|0)y
xe{0,1}"

2. &, repeats g, times:

)

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares |¢y) =272 Z |1 X)x|0)y
xe{0,1}"
2. &, repeats g, times:

» query H

)

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:
1. o, prepares |¢y) =272 Z |1 X)x|0)y
x€{0,1}"
2. &, repeats g, times:
» query H
» apply cto X

)

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares |¢y) =272 Z |1 X)x|0)y
x€{0,1}"
2. &, repeats g, times:
» query H
» apply cto X
3. & tries to undo 2.

)

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares |¢y) =272 Z |1 X)x|0)y
x€{0,1}"
2. &, repeats g, times:
» query H
» apply cto X
3. & tries to undo 2.

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares |¢y) =272 Z |1 X)x|0)y
x€{0,1}"
2. &, repeats g, times:
» query H
» apply cto X
3. & tries to undo 2.

S={e,0,0,0, 0 0}

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares |¢y) =272 Z |1 X)x|0)y

xe{0,1}"
2. &, repeats g, times:
» query H
» apply cto X
3. & tries to undo 2.
Result: | ¢y,), with
(\
[y > =272 Y [x) [H¥) @ y*) +) |x)]0)
\xES X&S J

S={e,0,0,0, 0 0}

Quantum algorithm

Idea: use classical “checksum algorithm” for a superposition of sets of g, inputs

Quantum algorithm:

1. o, prepares |) =272 2 %)y | 0y

xe{0,1}"
2. &, repeats g, times:
» query H
» apply cto X
3. & tries to undo 2.
Result: | ¢,), with
()
|y >=272 Z | xX) [H(x*) @ y*) + Z | x)]0)
\xeS x&S)

H|¢o>—|¢1>”=\/2qo2_” S={e,0,0,0, 0 0}

Summary

» Tight characterization of "adaptive reprogramming” oracle
distinguishing task in the quantum setting

» Informs NIST competition for post-quantum crypto schemes

» Proof based on simplest version of Zhandry's superposition oracle

» Efficient algorithm matching the bound.

Thanlkes!

— St

b & 0,1}
& 01y

¥ & (0,1}

(y*,st) —

